Non Recursive Binary Tree Traversal using Stack

//Inorder tree traversal non recursive.

template<typename T> void BST<T>::inorder_non_recursive(NODE<BT>* nptr)
{
    cout << endl;
    stack<NODE<BT>*> s;
    while (!s.empty() || nptr)
    {
        /*If nptr is NULL, we need to pop from top of the stack
        and print it's value. Then traverse the right sub-tree*/
        if (!nptr)
        {
            nptr = s.top();
            cout << nptr->data << "\t";
            nptr = nptr->right;
            s.pop();
        }
        /*Keep traversing left unless nptr is NULL*/
        if (nptr)
        {
            s.push(nptr);
            nptr = nptr->left;
        }
    }
    cout << endl;
    return;
}

//Non recursive preorder tree traversal

template<typename T> void BST<T>::preorder_non_recursive(NODE<BT>* nptr)
{
    cout << endl;
    stack<NODE<BT>*> s;
    /*Root is NULL, nothing to do.*/
    if (!nptr)
        return;
    /*Push root*/
    s.push(nptr);
    while (!s.empty())
    {
        /*Pop the top element*/
        NODE<BT>* tmpPtr = s.top();
        cout << tmpPtr->data << "\t";
        s.pop();
        /*Go right before going left as we are using a stack.*/
        if (tmpPtr->right)
            s.push(tmpPtr->right);
        if (tmpPtr->left)
            s.push(tmpPtr->left);
    }
    cout << endl;
    return;
}

/*Non recursive postorder tree traversal. There are  two solutions of this traversal
  * 1.) using two stacks
  * 2.) using one stack
*/

template<typename T> void BST<T>::postorder_non_recursive(NODE<BT>* nptr)
{
    cout << endl;
    if (!nptr)
        return;
    stack<NODE<BT>*> stk1;
    stack<NODE<BT>*> stk2;
    /*Push root into stack stk1*/
    stk1.push(nptr);
    while (!stk1.empty())
    {
        /*Pop fropm sack stk1 and push it to stack stk2*/
        NODE<BT>* tmpPtr = stk1.top();
        stk2.push(tmpPtr);
        stk1.pop();
        /*Now push left child before right. Because when we push it back to
        stack stk2, the order will be correct.*/
        if (tmpPtr->left)
            stk1.push(tmpPtr->left);
        if (tmpPtr->right)
            stk1.push(tmpPtr->right);
    }
    /*Now stk2 has got all the nodes in postorder. We will just pop it one by
    one and print.*/
    while (!stk2.empty())
    {
        NODE<BT>* tmpPtr = stk2.top();
        stk2.pop();
        cout << tmpPtr->data << "\t";
    }
    cout << endl;
    return;
}

//Non recursive postorder tree trraversal using only one stack.

template<typename T> void BST<T>::postorder_non_recursive_1(NODE<BT>* nptr)
{
    if (!nptr)
        return;
    cout << endl;
    stack<NODE<BT>*> s;
    /*We will need current poionter to the node we are currently
    traversing and the pointer to the node we traversed previously.*/
    NODE<BT>* current = nptr;
    NODE<BT>* previous = NULL;
    s.push(current);
    while (!s.empty())
    {
        current = s.top();
        /*Traverse the tree down*/
        if (!previous || previous->left == current || previous->right == current)
        {
            if (current->left)
                s.push(current->left);
            else if (current->right)
                s.push(current->right);
            else
            {
                cout << current->data << "\t";
                s.pop();
            }
        }
        /*Traverse the tree up from the left*/
        else if (current->left == previous)
        {
            if (current->right)
                s.push(current->right);
            else
            {
                cout << current->data << "\t";
                s.pop();
            }
        }
        else if (current->right == previous)
        {
            cout << current->data << "\t";
            s.pop();
        }
        previous = current;
    }
    cout << endl;
    return;

}

1 comment:

Priority Queue

Priority queue:-  It is a special type of queue which stores group of elements. Each element has a priority number associated with it. Prior...